Materialpool-Entwicklung/Clippings/Jiayi-PanTinyZero Clean, accessible reproduction of DeepSeek R1-Zero.md

125 lines
3.4 KiB
Markdown

---
title: "Jiayi-Pan/TinyZero: Clean, accessible reproduction of DeepSeek R1-Zero"
source: "https://github.com/Jiayi-Pan/TinyZero"
author:
- "[[GitHub]]"
published:
created: 2025-01-30
description: "Clean, accessible reproduction of DeepSeek R1-Zero - Jiayi-Pan/TinyZero"
tags:
- "clippings"
---
## TinyZero
[![image](https://github.com/Jiayi-Pan/TinyZero/raw/main/cover.png)](https://github.com/Jiayi-Pan/TinyZero/blob/main/cover.png)
TinyZero is a reproduction of [DeepSeek R1 Zero](https://github.com/deepseek-ai/DeepSeek-R1) in countdown and multiplication tasks. We built upon [veRL](https://github.com/volcengine/verl).
Through RL, the 3B base LM develops self-verification and search abilities all on its own
You can experience the Ahah moment yourself for < $30
Twitter thread: [https://x.com/jiayi\_pirate/status/1882839370505621655](https://x.com/jiayi_pirate/status/1882839370505621655)
Full experiment log: [https://wandb.ai/jiayipan/TinyZero](https://wandb.ai/jiayipan/TinyZero)
Paper's on it's way!
## Installation
```
conda create -n zero python=3.9
# install torch [or you can skip this step and let vllm to install the correct version for you]
pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121
# install vllm
pip3 install vllm==0.6.3 # or you can install 0.5.4, 0.4.2 and 0.3.1
pip3 install ray
# verl
pip install -e .
# flash attention 2
pip3 install flash-attn --no-build-isolation
# quality of life
pip install wandb IPython matplotlib
```
## Countdown task
**Data Preparation**
```
conda activate zero
python ./examples/data_preprocess/countdown.py --local_dir {path_to_your_dataset}
```
### Run Training
For the following code, if you see Out-of-vram, try add `critic.model.enable_gradient_checkpointing=True` to the script
**Single GPU**
Works for model <= 1.5B. For Qwen2.5-0.5B base, we know it fails to learn reasoning.
```
export N_GPUS=1
export BASE_MODEL={path_to_your_model}
export DATA_DIR={path_to_your_dataset}
export ROLLOUT_TP_SIZE=1
export EXPERIMENT_NAME=countdown-qwen2.5-0.5b
export VLLM_ATTENTION_BACKEND=XFORMERS
bash ./scripts/train_tiny_zero.sh
```
**3B+ model** In this case, the base model is able to develop sophisticated reasoning skills.
```
export N_GPUS=2
export BASE_MODEL={path_to_your_model}
export DATA_DIR={path_to_your_dataset}
export ROLLOUT_TP_SIZE=2
export EXPERIMENT_NAME=countdown-qwen2.5-3b
export VLLM_ATTENTION_BACKEND=XFORMERS
bash ./scripts/train_tiny_zero.sh
```
### Instruct Ablation
We experiment with QWen-2.5-3B Instruct too. **Data Preparation** To follow chat template, we need to reprocess the data:
```
conda activate zero
python examples/data_preprocess/countdown.py --template_type=qwen-instruct --local_dir={path_to_your_dataset}
```
**Training**
```
export N_GPUS=2
export BASE_MODEL={path_to_your_model}
export DATA_DIR={path_to_your_dataset}
export ROLLOUT_TP_SIZE=2
export EXPERIMENT_NAME=countdown-qwen2.5-3b-instruct
export VLLM_ATTENTION_BACKEND=XFORMERS
bash ./scripts/train_tiny_zero.sh
```
## Acknowledge
- We run our experiments based on [veRL](https://github.com/volcengine/verl).
- We use Qwen2.5 series base model [Qwen2.5](https://github.com/QwenLM/Qwen2.5).
## Citation
```
@misc{tinyzero,
author = {Jiayi Pan and Junjie Zhang and Xingyao Wang and Lifan Yuan and Hao Peng and Alane Suhr},
title = {TinyZero},
howpublished = {https://github.com/Jiayi-Pan/TinyZero},
note = {Accessed: 2025-01-24},
year = {2025}
}
```