--- title: "Jiayi-Pan/TinyZero: Clean, accessible reproduction of DeepSeek R1-Zero" source: "https://github.com/Jiayi-Pan/TinyZero" author: - "[[GitHub]]" published: created: 2025-01-30 description: "Clean, accessible reproduction of DeepSeek R1-Zero - Jiayi-Pan/TinyZero" tags: - "clippings" --- ## TinyZero [](https://github.com/Jiayi-Pan/TinyZero/blob/main/cover.png) TinyZero is a reproduction of [DeepSeek R1 Zero](https://github.com/deepseek-ai/DeepSeek-R1) in countdown and multiplication tasks. We built upon [veRL](https://github.com/volcengine/verl). Through RL, the 3B base LM develops self-verification and search abilities all on its own You can experience the Ahah moment yourself for < $30 Twitter thread: [https://x.com/jiayi\_pirate/status/1882839370505621655](https://x.com/jiayi_pirate/status/1882839370505621655) Full experiment log: [https://wandb.ai/jiayipan/TinyZero](https://wandb.ai/jiayipan/TinyZero) Paper's on it's way! ## Installation ``` conda create -n zero python=3.9 # install torch [or you can skip this step and let vllm to install the correct version for you] pip install torch==2.4.0 --index-url https://download.pytorch.org/whl/cu121 # install vllm pip3 install vllm==0.6.3 # or you can install 0.5.4, 0.4.2 and 0.3.1 pip3 install ray # verl pip install -e . # flash attention 2 pip3 install flash-attn --no-build-isolation # quality of life pip install wandb IPython matplotlib ``` ## Countdown task **Data Preparation** ``` conda activate zero python ./examples/data_preprocess/countdown.py --local_dir {path_to_your_dataset} ``` ### Run Training For the following code, if you see Out-of-vram, try add `critic.model.enable_gradient_checkpointing=True` to the script **Single GPU** Works for model <= 1.5B. For Qwen2.5-0.5B base, we know it fails to learn reasoning. ``` export N_GPUS=1 export BASE_MODEL={path_to_your_model} export DATA_DIR={path_to_your_dataset} export ROLLOUT_TP_SIZE=1 export EXPERIMENT_NAME=countdown-qwen2.5-0.5b export VLLM_ATTENTION_BACKEND=XFORMERS bash ./scripts/train_tiny_zero.sh ``` **3B+ model** In this case, the base model is able to develop sophisticated reasoning skills. ``` export N_GPUS=2 export BASE_MODEL={path_to_your_model} export DATA_DIR={path_to_your_dataset} export ROLLOUT_TP_SIZE=2 export EXPERIMENT_NAME=countdown-qwen2.5-3b export VLLM_ATTENTION_BACKEND=XFORMERS bash ./scripts/train_tiny_zero.sh ``` ### Instruct Ablation We experiment with QWen-2.5-3B Instruct too. **Data Preparation** To follow chat template, we need to reprocess the data: ``` conda activate zero python examples/data_preprocess/countdown.py --template_type=qwen-instruct --local_dir={path_to_your_dataset} ``` **Training** ``` export N_GPUS=2 export BASE_MODEL={path_to_your_model} export DATA_DIR={path_to_your_dataset} export ROLLOUT_TP_SIZE=2 export EXPERIMENT_NAME=countdown-qwen2.5-3b-instruct export VLLM_ATTENTION_BACKEND=XFORMERS bash ./scripts/train_tiny_zero.sh ``` ## Acknowledge - We run our experiments based on [veRL](https://github.com/volcengine/verl). - We use Qwen2.5 series base model [Qwen2.5](https://github.com/QwenLM/Qwen2.5). ## Citation ``` @misc{tinyzero, author = {Jiayi Pan and Junjie Zhang and Xingyao Wang and Lifan Yuan and Hao Peng and Alane Suhr}, title = {TinyZero}, howpublished = {https://github.com/Jiayi-Pan/TinyZero}, note = {Accessed: 2025-01-24}, year = {2025} } ```