add research-gui

This commit is contained in:
Joachim Happel 2024-04-05 15:07:14 +02:00
parent ea5e8702e9
commit da262f75fb
4 changed files with 169 additions and 16 deletions

Binary file not shown.

View file

@ -1,3 +1,4 @@
import os
import subprocess
# packages = ["open-interpreter", "gradio"]
@ -22,7 +23,6 @@ load_dotenv()
from crewai import Agent, Task, Crew, Process
# LLMs von OpenAI und Ollama importieren
from langchain_community.llms import OpenAI, Ollama
from langchain_openai import ChatOpenAI
from langchain.tools import tool
# Interpreter importieren
@ -30,22 +30,11 @@ from interpreter import interpreter
# Configurations and Tools
llm = ChatOpenAI(model_name="gpt-4-turbo-preview", temperature=0.8)
gpt4turbo = ChatOpenAI(model_name="gpt-4-turbo-preview", temperature=0.8)
interpreter.auto_run = True
interpreter.llm.model = "openai/gpt-4-turbo-preview"
interpreter.llm.temperature = 0.8
# loacl LLM Configuration and Tools
# llm = Ollama(model="mistral")
# interpreter.auto_run = True
# interpreter.llm.model = "openai/mistral"
# interpreter.llm.api_base = "http://localhost:11434/v1"
# interpreter.llm.api_key = "fake_key"
# interpreter.offline = True
# interpreter.llm.max_tokens = 1000
# interpreter.llm.max_retries = 20
# interpreter.llm.context_window = 3000
@tool('Executor')
def execute_cli_command(command: str):
@ -61,7 +50,7 @@ cli_agent = Agent(
goal='Helpfull Assistant. Ability to perform CLI operations, write programms and execute code using Executor Tool.',
backstory='Expert in command line operations and automating tasks.',
tools=[execute_cli_command],
llm=llm,
llm=gpt4turbo,
deligate_tools=False,
verbose=True
)
@ -78,7 +67,7 @@ cli_crew = Crew(
agents=[cli_agent],
tasks=[cli_task],
process=Process.sequential,
manager_llm=llm
manager_llm=gpt4turbo
)
# Run the crew in the CLI Interface
@ -91,7 +80,7 @@ def cli_interface(command):
iface = gr.Interface(
fn=cli_interface,
inputs=gr.Textbox(lines=2, placeholder="Was soll ich tun?"),
inputs=gr.Textbox(lines=2, placeholder="Was soll ich tun?", value="Identifiziere das Betriebssystem, nutze F:\blog-posts als Arbeitsverzeichniss und generiere eine Markdown Datei mit dem Titel 'Test' und der Liste aller Dateien in diesem Verzeichniss als Inhalt."),
outputs="text",
title="CLI Command Executor",
description="Execute CLI commands via a natural language interface."

View file

@ -77,3 +77,64 @@ Please note that changing a file's content with the given tools requires an exte
}
]
}",,,2024-03-27 18:31:00.882620
Erstelle auf meinem Windows PC eine Worddatei im Ordner F:\blog-posts mit beliebigen Inhalt,"To create and save a new Microsoft Word document with the initial text ""Your desired initial text here"" in your Windows PC, following these steps will work:
1. Open Microsoft Word using its executable file (assuming default installation location): `start """"C:\Program Files (x86)\Microsoft Office\Root\Office16\WINWORD.EXE""""`
2. If you want to automate the creation and saving of the Word document using Python, use the Executor tool with the following command input:
```python
{'command': 'import win32com.client as win32; word = win32.Dispatch(""Word.Application"").Visible=True; doc = word.Documents.Add(); doc.Content=""Your desired initial text here""; doc.SaveAs(""F:\\blog-posts\\my_file.docx""); doc.Close(0); word.Quit()'}
```
After these steps, the Word document will be successfully created with your given content and saved in the specified location ""F:\blog-posts\my_file.docx"".",,,2024-03-27 22:55:02.046169
Determine the operating system and create a Word file in the folder F:\blog-posts with any content,"Log of Actions and Results for Task Execution:
```python
# Obtained OS Information
import platform; print(platform.system())
# Output: 'windows (on this specific virtual environment)'
# Create Word File in F:\blog-posts Directory
import win32com.client; word = win32com.client.Dispatch('Word.Application'); doc = word.Documents.Add(); doc.SaveAs(r'F:\blog-posts\assistant_output.docx'); word.Quit()
# Output: This code creates a new Word document using the COM object model and dispatches the Word.Application to create a reference to Microsoft Word. After creating a new document, it saves the file in the directory F:\\log-posts (assuming the current working directory is F:\\) with a filename of assistant_output.docx. Finally, the application quits once the saving operation is complete. This code will only function on a Windows system since it uses specific libraries and commands that are Windows-specific.
```",,,2024-03-27 23:11:53.438707
Determine the operating system and create a Word file in the folder F:\blog-posts with any content,"Log of Actions and Results for Task Execution:
```python
# Obtained OS Information
import platform; print(platform.system())
# Output: 'windows (on this specific virtual environment)'
# Create Word File in F:\blog-posts Directory
import win32com.client; word = win32com.client.Dispatch('Word.Application'); doc = word.Documents.Add(); doc.SaveAs(r'F:\blog-posts\assistant_output.docx'); word.Quit()
# Output: This code creates a new Word document using the COM object model and dispatches the Word.Application to create a reference to Microsoft Word. After creating a new document, it saves the file in the directory F:\\log-posts (assuming the current working directory is F:\\) with a filename of assistant_output.docx. Finally, the application quits once the saving operation is complete. This code will only function on a Windows system since it uses specific libraries and commands that are Windows-specific.
```",,,2024-03-27 23:11:55.769591
Determine the operating system and create a Word file in the folder F:\blog-posts with any content,"Log of Actions and Results for Task Execution:
```python
# Obtained OS Information
import platform; print(platform.system())
# Output: 'windows (on this specific virtual environment)'
# Create Word File in F:\blog-posts Directory
import win32com.client; word = win32com.client.Dispatch('Word.Application'); doc = word.Documents.Add(); doc.SaveAs(r'F:\blog-posts\assistant_output.docx'); word.Quit()
# Output: This code creates a new Word document using the COM object model and dispatches the Word.Application to create a reference to Microsoft Word. After creating a new document, it saves the file in the directory F:\\log-posts (assuming the current working directory is F:\\) with a filename of assistant_output.docx. Finally, the application quits once the saving operation is complete. This code will only function on a Windows system since it uses specific libraries and commands that are Windows-specific.
```",,,2024-03-27 23:11:57.159086
"Identify the operating system, write the necessary scripts and execute them: Write any content in a Word document F:\blog-posts\demo.docx","To identify the operating system on a Windows machine, we can utilize PowerShell commands through the Executor tool provided. We executed ""systeminfo"" to retrieve various system information like installed components, BIOS data, operating system details, user profile, and network card information. The output provided was extensive and detailed, showcasing your system's configuration.
To specifically detect the OS and CPU architecture, we attempted to use an external PowerShell script from creationix/nsh repository (https://raw.githubusercontent.com/creationix/nsh/master/src/detectos.ps1) through the Executor tool as well. However, being a text-based AI assistant, I couldn't execute or display its output on my end; it would be seen only when run locally on PowerShell.
In conclusion, the provided Executor tool can help gather essential system information and execute necessary commands to identify operating systems on Windows machines.",,,2024-03-28 10:11:16.496722
"Identify the operating system, write the necessary scripts to create a new docx in F:\blog-posts and execute them","The attempt to create a new docx file in F:\blog-posts resulted in an ImportError due to a naming conflict with a local file named docx.py, preventing the correct importation of the Document class from the python-docx library. To resolve this issue, it is necessary to rename or remove the conflicting local file and ensure the python-docx library is correctly installed before retrying the operation.",,,2024-03-28 10:36:18.509629
"Welche berühmten Personen lebten in Bingen?
","Kategorie: Johann Gottfried Herder
- Verbindung zu Bingen: Es gibt keine spezifischen Informationen über seine Verbindung zu Bingen.
- Bekannt für: Er war ein einflussreicher Philosoph, Theologe und Literaturkritiker während der Aufklärung.
Kategorie: Johann Nepomuk Hummel
- Verbindung zu Bingen: Es wurde festgestellt, dass er in Pressburg, nicht in Bingen, geboren wurde.
- Bekannt für: Er war ein prominenter Komponist und Pianist während der klassischen Ära.
Kategorie: Helmut Kohl
- Verbindung zu Bingen: Es wurden keine spezifischen Informationen über seine Verbindung zu Bingen gefunden.
- Bekannt für: Kohl diente 16 Jahre lang (von 1982 bis 1998) als Kanzler Deutschlands und spielte eine bedeutende Rolle bei der Wiedervereinigung Deutschlands.
Hinweis: Die ursprünglichen Informationen möglicherweise nicht vollständig korrekt waren und dass weitere Untersuchungen erforderlich sind, um die Verbindung dieser Persönlichkeiten zu Bingen zu klären.",,,2024-03-28 14:09:13.039461

1 command output flag username timestamp
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

103
research-gui.py Normal file
View file

@ -0,0 +1,103 @@
# pip install arxiv
import os
import gradio as gr
from crewai import Agent, Task, Crew, Process
# Importieren Sie die benötigten Tools
from langchain_community.llms import Ollama
from langchain_community.tools import DuckDuckGoSearchRun
# ChatCPT 3.5 importieren
from langchain_openai import ChatOpenAI
turbo35 = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0.7)
# Wikipedia Suche importieren
from langchain_community.tools.wikipedia.tool import WikipediaQueryRun
from langchain_community.utilities.wikipedia import WikipediaAPIWrapper
from langchain_community.tools.arxiv.tool import ArxivQueryRun
# Initialisieren Sie die Tools
ollama_llm = Ollama(model="mistral")
search_tool = DuckDuckGoSearchRun()
wikipedia = WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper())
arxiv = ArxivQueryRun()
# Definieren Sie Ihre Agenten mit Rollen und Zielen
informations_sammler = Agent(
role='Forscher',
goal='Sammeln von Basisinformationen und Zitate zum Thema',
backstory="""Spezialisiert auf die Sammlung und Analyse von Grundinformationen und wichtiger Zitate.""",
verbose=True,
allow_delegation=False,
llm=ollama_llm
)
informations_verifizierer = Agent(
role='Datenanalyst',
goal='Verifizieren und Erweitern der Informationen durch Websuche. Füge Zitate und Urls als Belege hinzu. Entferne falsche Informationen aus den Ergebnissen. Suche nach weiteren Informationen und Zitaten gegebenenfalls über deutsche und englische Wikipedia. Nutze geignete Begriffe für die Suche in Arxiv.',
backstory="""Experte in der Überprüfung von Informationen und der Erweiterung durch effektive Websuchen.""",
verbose=True,
allow_delegation=False,
tools=[search_tool,wikipedia,arxiv],
llm=ollama_llm
)
informations_organisator = Agent(
role='Inhaltsmanager',
goal='Gliedern der Informationen, Zitate und Links nach Kategorien',
backstory="""Zuständig für die Organisation der gesammelten Informationen in einer strukturierten Form.""",
verbose=True,
allow_delegation=False,
llm=ollama_llm
)
# Erstellen Sie Aufgaben für Ihre Agenten
task1 = Task(
description="""Sammle grundlegende Informationen über eun Thema.""",
#agent=informations_sammler,
expected_output="""Eine Zusammenfassung von Basisinformationen über das Thema,
einschließlich Definitionen, wichtigsten Fakten und allgemeinem Überblick."""
)
task2 = Task(
description="""Verifiziere die gesammelten Informationen und erweitere sie durch zusätzliche Websuchen.""",
#agent=informations_verifizierer,
expected_output="""Eine verifizierte und erweiterte Liste von Informationen zu Thema X,
inklusive zusätzlicher Quellen und tiefergehenden Einsichten."""
)
task3 = Task(
description="""Erzeuge aus den gesammelten und verifizierten Informationen einegeliedertes Essay von 2000 Worten, dass die Zusammenstellung der recherchierten und verifizierten Informationen mit entsprechenden Quellenangaben berücksichtigt.""",
#agent=informations_organisator,
expected_output="""Ein gut strukturiertes Dokument, das die Informationen zu Thema X
klar gegliedert präsentiert, für einen umfassenden einblick in das Thema."""
)
# Instanziieren Sie Ihre Crew mit einem sequenziellen Prozess
crew = Crew(
agents=[informations_sammler, informations_verifizierer, informations_organisator],
tasks=[task1, task2, task3],
verbose=2,
manager_llm=turbo35,
process=Process.hierarchical
)
# Starten Sie den Arbeitsprozess!
def cli_interface(thema):
task1.description = thema
result = crew.kickoff()
return result
iface = gr.Interface(
fn=cli_interface,
inputs=gr.Textbox(lines=2, placeholder="Recherche zu welchem Theme", value=""),
outputs="text",
title="Recherche",
description="Führt eine Recherche zu einem bestimmten Thema durch und organisiert die gesammelten Informationen."
)
iface.launch(share=False)